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This paper aims to study the relationships between chromosomal DNA sequences of twenty species. We propose a methodology
combining DNA-based word frequency histograms, correlation methods, and an MDS technique to visualize structural
information underlying chromosomes (CRs) and species. Four statistical measures are tested (Minkowski, Cosine, Pearson
product-moment, and Kendall τ rank correlations) to analyze the information content of 421 nuclear CRs from twenty species.
The proposed methodology is built on mathematical tools and allows the analysis and visualization of very large amounts of stream
data, like DNA sequences, with almost no assumptions other than the predefined DNA “word length.” This methodology is able to
produce comprehensible three-dimensional visualizations of CR clustering and related spatial and structural patterns. The results
of the four test correlation scenarios show that the high-level information clusterings produced by the MDS tool are qualitatively
similar, with small variations due to each correlation method characteristics, and that the clusterings are a consequence of the
input data and not method’s artifacts.

1. Introduction

DNA related information can be analyzed in many different
ways, including by methods based on “word frequency”
histograms derived from DNA sequences [1]. Histograms are
a condensed representation of the original information and
allow further processing methods, like correlation, which
are not viable in the original data. The correlation between
histograms can be computed, producing a correlation matrix
that can serve as input to other methods for high-level
information extraction and tabular/graphical analysis like
the multidimensional scaling (MDS) technique, which is
able to create low-dimensional representations of complex
data while preserving similarities between data points. In
[2], the authors describe how the Kendall τ rank correlation
method [3] is used to generate the correlation matrix and

how a Multidimensional Scaling (MDS) tool [4] is able to
generate three-dimensional representations of spatial and
structural relationships of the chromosomes and species.
In that paper, only one correlation method is applied to
the generation of correlation matrices, but many other
correlation methods exist and can be used for studying
chromosomal/species relationships. As such, we compare
and evaluate a set of correlation methods in order to
determine if those relationships show up in all methods and
are similar. Our main goals are to find out if, for each of
several correlation methods and word lengths used in the
processing of DNA sequences,

(a) the MDS tool generates three-dimensional represen-
tations featuring spatial and structural patterns;
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Table 1: Main characteristics of the twenty species and their chromosomes.

Species Tag Group Chromosomes

Human Hu mammal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chimpanzee Ch mammal 1 2a 2b 3 4 5 6 7 8 9 10 11 12 1 14 15 16 17 18 19 20 21 22 X Y

Orangutan Or mammal 1 2a 2b 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Rhesus Rm mammal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 X

Pig Po mammal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 X

Opossum Op mammal 1 2 3 4 5 6 7 8 X

Horse Eq mammal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 X

Dog Dg mammal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 X

Ox Ox mammal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 X

Mouse Mm mammal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y

Rat Rn mammal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 X

Chicken Ga ave 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 W Z

Zebra finch Tg ave 1a 1b 1 2 3 4 4a 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 Z

Zebra fish Zf fish 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Tetraodon Tn fish 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Mosquito Ag insect 2l 2r 3l 3r X

Honey bee Am insect 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C. elegans Ce worm 1 2 3 4 5 X

C. briggsae Cb worm 1 2 3 4 5 X

Yeast Sc fungus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(Note: CRs, Ga32, and Tg16 were ignored due to their very small base pair count).

(b) its spatial and structural patterns denote significant
differences for distinct correlation methods;

(c) the results from MDS tool are qualitatively similar,
independently of the correlation method used.

It should be noted that important contributions in this
topic [1, 5] were proposed using alignment-free sequence
comparison methods, but the proposed method is based on
different concepts.

Bearing these ideas in mind, this paper is organized
as follows. Section 2 presents the biological concepts and
mathematical tools, formulating its application in the con-
text of DNA sequence decoding. Section 3 analyzes the
correlation between CRs and several species, by investigating
data representation using MDS applied to twenty species and
their CRs. Finally, Section 4 outlines the main conclusions
and open issues.

2. Mathematical Tools and DNA Decoding

The chromosomal DNA code of the twenty species was
downloaded from the DNA sequence database of the Uni-
versity of California Santa Cruz Genome Bioinformatics
site [6]. In each CR, repeated strings of more than 12
symbols were previously masked and replaced by “N”
symbols, in order to ignore the nongenomic and nonreg-
ulatory sequence data. In consequence, we are handling
an alphabet composed of symbols, namely, {T, C, A, G, N}.
In terms of DNA data, an option was made for a set
of twenty species, aiming to explore the dynamic analysis

by changing the sequence length n in the range 1 ≤
n ≤ 8. The twenty species include eleven mammals
{Hu, Ch, Or, Rm, Po, Eq, Ox, Dg, Rn, Mm, Op}, two birds,
Chicken and Zebra finch {Ga, Tg}, two fishes, Zebrafish
and Tetraodon {Zf, Tn}, two insects, Gambiae mosquito and
Honeybee {Ag, Am}, two nematodes, Caenorhabditis elegans
and Caenorhabditis briggsae {Ce, Cb}, and one fungus, Yeast
{Sc}, with a grand total of p = 421 CRs. The characteristics
of chosen species and its DNA are presented in Table 1.

The DNA implements an alphabet composed by the
symbols {T, C, A, G}. Any simple translation to a numerical
counterpart may impose bias and destroy intrinsic infor-
mation. Consequently, it was decided to directly process
the non-numerical code. Due to the immense volume of
information, a histogram-based measure was adopted. Nev-
ertheless, in general, histograms do not capture dynamics. In
order to overcome this limitation, a flexible pattern detection
algorithm based on counting the sequence of symbols was
considered [1]. By “flexible” we mean that the algorithm can
count sequences of length n items, each one composed by
one of the four base symbols.

With the exception of Yeast (Sc), the available CR data
includes a fifth symbol (“N”), corresponding to masked DNA
symbols not belonging to the genome, which typically appear
in large contiguous sequences. For example, in the Human
Y CR file there are 59373566 base pairs, of which 33710000
are “N” (56.78%) arranged in 17 sequences, the largest one
with 30000000 symbols. Another example is the Chicken
Ga25 CR, with 2051775 base pairs, of which 663879 are “N”
(32.67%) arranged in 274 sequences, the largest one with
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Table 2: Influence of symbol “N” upon the statistics.

Chromosome Sequences with“N” removed (α) Sequences with“N” filtered (β) (α− β)/β in %

Ga25 1367889 1366030 0.136088%

Ga3 110204947 110177075 0.025297%

Tn1 20304845 20315377 0.051869%

Tn15 6235253 6236842 0.025484%

AgX 21470369 21477782 0.034527%

Ag2l 48065434 48071405 0.012423%

HoY 25653559 25653447 0.000437%

Ho5 177695253 177695218 0.000020%

500000 symbols. HoY and Ga25 are just two examples of CRs
with a percentage of “N” symbols greater than 10%, but most
of the CRs have smaller percentages.

We decided not to use “N” in sequences as a fifth symbol
or not to replace it by any of the symbols {T, C, G, or A},
because that would introduce an unknown bias in the
sequence processing. We then considered the following two
approaches:

(a) remove all “N” symbols in a preprocessing step or,

(b) process sequences but ignoring any sequence with an
“N”.

Although (a) and (b) may seem different, we concluded that
differences were minimal and that (a) could be advanta-
geously used without compromising the quality of results
and conclusions.

Using as examples {Hu, Ck, Tn, Ag} nuclear CRs, and a
sequence length of n = 8 in Table 2, the rightmost column
synthesizes the differences for the (a) and (b) approaches. For
Ga25 the Pearson correlation coefficient r between (a) and
(b) sequences with length n = 8 yields r > 0.9999717, while
for HoY the corresponding coefficient r is >0.9999999. We
conclude that both approaches are statistically equivalent for
the envisaged DNA decoding. Therefore, we opted to discard

the “N” symbol before histogram construction.
We have different statistics when considering the length

ranging from n = 1, representing merely a static counting
of m = 41 states, up to n = 8, representing a system with
m = 48 (65536) states. During the bin counting two possible
approaches may be considered, namely, windows without
any overlapping and windows with a partial overlapping of
the n base sequence. Therefore, two extreme opposite cases
were tested, namely, successive counting windows with zero
and with n−1 adjacent bases in the DNA. In the first case, for
a DNA strand of length L and sequences of length n, results
a total of approximately L/n counting windows, while for
the second it yields L − n + 1 counting windows. Previous
tests revealed that both schemes lead to similar qualitative
results, with some slight differences in the smaller CRs [2].
In order to get a more robust counting, we adopted the one-
base sliding window (i.e., overlapping of n − 1 consecutive
bases).

Having generated the histograms, the second step in the
analysis consists in evaluating their similarities by means of
suitable correlation indices. In this study, we evaluate four
correlation methods [3, 7, 8], namely, the Minkowski rMi j ,

Cosine rCi j , Pearson product-moment rPi j , and Kendall τ rank

rKi j as given by

rMi j =
⎡
⎣

m∑

r=1

∣∣∣ fi(r)− f j(r)
∣∣∣α
⎤
⎦

1/α

, α > 0, (1)

rCi j =
∑m

r=1 fi(r) f j(r)√∑m
r=1

[
fi(r)

]2∑m
r=1

[
f j(r)

]2
, (2)

rPi j =
m
∑m

r=1 fi(r) f j(r)−∑m
r=1 fi(r)

∑m
r=1 f j(r)

√
m
∑m

r=1

[
fi(r)

]2 − [∑m
r=1 fi(r)

]2
√
m
∑m

r=1

[
f j(r)

]2 −
[∑m

r=1 f j(r)
]2

, (3)

rKi j =
(
number of concordant pairs

)− (number of disconcordant pairs
)

(1/2)m(m− 1)
, (4)

where fi(r) and f j(r) represent the relative frequencies of
histograms i and j for bin r and m denotes the total number

of bins. If ( fi, f j) represents a set of joint observations
from two variables, any pair of observations are said to
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be concordant (discordant) if the ranks for both elements
agree (disagree), while for identical rank the pair is neither
concordant nor discordant.

For the purpose of visualizing the correlation results,
the multidimensional scaling (MDS) technique is adopted
[9–11]. The MDS is a mathematical tool that represents,
in a low-dimensional map, a set of data points whose
similarities (or, alternatively, distances) are defined in a
higher dimensional space by means of a symmetric matrix
S = [si j]. In case of similarities (or, alternatively, distances)
and classical MDS, the main diagonal is composed of
ones (or, alternatively, zeros), while the rest of the matrix
elements must obey the restriction 0 ≤ skl ≤ 1 (skl ≥
0), k, l = 1, . . . , p, where p is the total number of cases
under comparison [12]. It should be noted that MDS works
with relative measurements. Therefore, MDS maps are not
sensitive to translations or rotations. The axes have only
the meaning and units (if any) of the measuring index and
packages usually apply a heuristic procedure for centering
the chart. In practical terms, this means that MDS maps
are analyzed on the basis of proximity of (or, alternatively,
distance between) points and comparison of the resulting
“cloud” of points. Usually, in order to improve the graphical
representation, 2-D and 3-D MDS plots are used and its
consistency verified by means of Shepard and/or stress charts
[13].

3. Analysis of DNA Sequence Histograms

In this section, we start by analyzing a limited part of the
global information by means of direct methods. We verify
some limitations due to the huge volume of data. This
fact motivates the adoption of a more efficient visualization
method, namely, the MDS, that is applied to the complete set
of data.

3.1. Analysis of Six Species Using a Diagram Visualization
Method. In this subsection, we compare six mammals,
namely, Human, Common Chimpanzee, Orangutan, Rhesus
monkey, Pig, and Opossum, denoted by {Hu, Ch, Or, Rm, Pi,
and Op}. In this preliminary analysis, it is adopted that n = 8
in the histogram construction and the correlation expression
(2), leading to a 6×6 matrix S with considerable information.
Considering a threshold value of 99.5% for selecting the
“most similar CRs” (i.e., smaller values are ignored) we get
the groups presented in Figure 10. We observe that some
CRs with distinct numbering are very similar as, for example,
Rm16 is clearly correlated with Hu17, Ch17, and Or17, while
others are very different from the rest, such as, for example,
HuY, ChY, Rm19, Pi12, and OpX. In terms of species we
conclude that:

(i) Hu has twenty CRs correlated in the first place with
Ch and two with Or,

(ii) Ch has eighteen CRs correlated in the first place with
Hu and six with Or,

(iii) Or has twenty one CRs correlated in the first place
with Ch and three with Hu,

(iv) Rm has one CR correlated in the first place with Hu
and zero with Ch and Or,

(v) Pi and Op have zero CRs correlated with the rest of
the species.

Therefore, we conclude that Ch is the species closest to the
Hu, Rm is far from the trio {Hu, Ch, Or}, and {Pi, Op} have
no proximity with the rest.

This information can be depicted graphically. Figure 1
shows visualization graphs generated by Graphviz [14], an
open-source software for representing structural informa-
tion as diagrams of abstract graphs and networks. The
r = {3, 4} most correlated CRs for the group {Hu, Ch, Or}
reveals clearly, for example, triplets of CRs 19, 20, and 22,
groups of CRs 13 and 4, groups of CRs 16, 17, and Rm20.

For the trio {Hu, Ch, and Or}, Figure 2 shows the chart
for the cases of r = 2 and r = 3.

These tests reveal that even for a limited set of data
directed graph methods lead to complicated representations.

3.2. Analysis of Twenty Species Using the MDS Visualization
Method. In this subsection, we compare the complete set of
species using the MDS method. Therefore, after computing
all the chromosomal histograms of the twenty species for
1 ≤ n ≤ 8, the GGobi package [4] is used for generating
the MDS plots corresponding to the correlation methods
described in (1)–(4). In Figures 3 to 6, we depict MDS
plots, using a classical metric dissimilarity analysis, for each
correlation method when n = {2, 3, 6, 8}. The choice for the
aforementioned values of n was motivated by the following
considerations:

(i) n = 2; it is the smallest value of n for reasonably
discriminating DNA-based frequency histograms;

(ii) n = 3; the protein coding machinery in CRs uses
triplets (3) of bases to specify amino acids [15];

(iii) n = 6; a larger value of n that is also multiple
of 3 and potentially sensitive to the protein coding
mechanisms;

(iv) n = 8; a larger value of n that is not multiple of 3 and
is computationally tractable.

The MDS maps for the remaining values of n are not
depicted due to space limitation. Values of n > 8 were
not considered because they impose an increasingly greater
computational burden: the number of frequency bins in
a histogram is m = 4n, each correlation depends on
m2 operations and a complete correlation study requires
approximately p2/2 correlations.

Figure 3 presents MDS plots for the Minkowski correla-
tion rMi j revealing the emergence of chromosomal patterns for
all values of n. We note that the MDS plots vary progressively
and smoothly from n = 2 up to n = 8. When n = 8, we
observe that mammals’ CRs are more spatially separated and
that the primates’ CRs “diverge” from the rest of the mam-
mals. The Minkowski correlation depends on the value of the
parameter α = 0. For α = 1 and α = 2, it yields the com-
monly known Manhattan (or City) and Euclidean distances,
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Figure 1: The r most correlated CRs for the group {Hu, Ch, Or} (a) r = 3, (b) r = 4. Legend: grey rectangle: objective CR (arrows point
towards him), ellipse: CR that correlates with another edge r : rth most correlated CR.

while for the limiting case α → ∞ we obtain the Chebyshev
distance. After testing the MDS plots for several values of
α, α = 2 was adopted as representative of this method.

Figure 4 presents MDS plots for the cosine correlation
rCi j demonstrating clear chromosomal patterns. Again we
conclude that the MDS plots evolve from n = 2 up to
n = 8. Moreover, mammals’ CRs become more separated
as n reaches larger values such as n = 6 and n = 8.
It is clearly noticeable that the MDS plots in Figures 3 and
4 are geometrically very distinct but depict chromosomal
patterns and structures that lead to conclusions of the same
type. This visual effect is common in MDS maps, namely,
with the conclusions being drawn in relative terms rather
than in an absolute perspective, with the patterns and not
the absolute coordinates of points being important.

Figure 5 presents MDS plots for the Pearson product-
moment correlation rPi j . Again, chromosomal patterns are
clearly observable for all values of n and the smooth
evolution from n = 2 up to n = 8. We note that the Pearson
correlation method is based on the product of moments,
which means that it is invariant to separate changes in
location and scale of the two histogram sequences. The
MDS plots of Figure 5 also depict chromosomal patterns and
structures, but geometrically distinct from the MDS plots
represented in previous figures.

Finally, Figure 6 presents MDS plots for the Kendall τ
rank correlation rKi j leading to similar conclusions.

Comparing the four indices {rMi j , rCi j , r
P
i j , r

K
i j } that feed the

MDS plots, we conclude that the Kendal τ correlation rKi j
reveals more distinct transitions between MDS plots and,



6 Comparative and Functional Genomics

Ch10

Hu10

1

Or10

1

1

2

2

2

Ch11

Hu11

1

Or11

1

1

2

2

2

Ch12

Hu12

1

Or12

2

1

1

2

2

Ch13

Hu13

1

Or13

1

1

2

2

2

Ch14

Hu14

1

Or14

2

1

1

2

2

Ch15

Hu15

1

Or15

1

1

2

2

2

Ch16

Hu16

1

Or16

1

1

2

2

2

Ch17

Hu17

1

Or17

2

1

1

2

2

Ch18

Hu18

1

Or18

1

1

2

2

2

Ch19

Hu19

1

Or19

1

1

2

2

2

Ch1

Hu1

1

Or1

1

1

2

2

2

Ch20

Hu20

1

Or20

1

1

2

2

2

Ch21

Hu21

1

Or21

1

1

2

2

2

Ch22

Hu22

1

Or22

1

1

2

2

2

Ch2a

Hu2

2

Or2a

1

1

2

Or7

2

2

Or2b

1 1

Ch6

2

Hu6

1

Or6

1

Hu3

1

Or3

1

1

2

2

2

Ch4

Hu4

1

Or4

1

1

2

2

2

Ch5

Hu5

1

Or5

2

1

1

2

21

2

2

2

2

Hu7

1

1

1

2

2

Ch8

Hu8

1

Or8

1

1 1

2

2

2 Hu9

1

Or9

1

1

2

2

2

2

2

1

1

2

1

Ch7

Ch2b

Ch3 Ch9 ChX

HuX

OrX

(a)

Ch10

Hu10

1

Or10

1

Ch21

1

2

2

2

Ch1

3

3

Or1

1

Ch15

3

Or15

3

Hu1

1

Ch9

3Hu9

3

Ch11

Hu11

1

Or11

1

3

1

2

2

2

3

2 3

3

3

2

Or9

3

Ch12

Hu12

1

Or12

2

1

1

Hu7

3

2

2

Ch7

3

Ch14

3

1

Or7

1

Ch13

Hu13

1

Or13

1

1

2

2

2

Hu4

3

Ch4

3Or4

3 3

3

1

2

Hu14

1

Or14

2

1

1

2

2

Hu15

1

1

1

2

2

2

Ch16

Hu16

1

Or16

1

1

2

2

2

Ch20

3

Hu20

3

Or20

3

Rm20

3

3

3

Ch17

Hu17

1

Or17

2

1

1

2

2

Rm16

3

3

3

Ch18

Hu18

1

Or18

1

1

2

2

2

Ch2b

3

Or2b

1

Ch19

Hu19

1

Or19

1

1

2

2

2

Ch22

3

Hu22

3

Or22

3

Rm19

3

3

31

2

3

3

Ch2a

3

1

1

1

1

1

2

2

2

Hu21

1

Or21

1

1

2

2

2

1

1

1

2

2

2

3

Hu2

2

Or2a

1

3 3

1

2

2

Ch8

3

Hu8

3

Or8

3

2

3

1

Ch6

2

Hu6

1

Or6

1

Ch5

3

Ch3

3

Hu5

1

Or5

2

3

3

Hu3

1

Or3

1

1

2

3

3

3

2

2

3

3

1

1

3

2

2

1

3

1

2

2

1

2

2

2

3

2

3

1

3

3 3

3

2

3

3

2

1

11

1

2

2

2

1

2

2

3

2

ChX

2

2

1

1

2

1

RmX

3

3

3

Rm1

3

HuX

OrX

(b)

Figure 2: The r most correlated CRs for the group {Hu, Ch, Or} (a) r = 2, (b) r = 3. Legend: Grey rectangle: objective CR (arrows point
towards him), ellipse: CR that correlates with another edge r : rth most correlated CR.

Mammals

Ga/Tg

Tn

Sc

Ag

Zf

Cb

Ce

Am

M
am

m
al

s

Tn

Sc

Ag

Zf

Cb

Ce

Am
Mm

Ga

Tg

Op

M
am

m
als

Tn Ag

Zf

Cb

Ce

Am

Mm

Ga
Tg

Op
Dg

Rn

Primates

Ga/Tg
Tn

Ag

Op

Zf

Sc

Cb

Ce

Am
MammalsMn/Rn

n = 2 n = 3

n = 6 n = 8
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consequently, the chart for rKi j and n = 8 seems to be the
one that depicts more noticeable chromosomal patterns and
geometrical structures.

A standard assessment tool in MDS analysis is the
Shepard plot, which provides a qualitative measure of the
goodness of fit. Considering i and j the row and column
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indexes of matrix S, the Shepard plot represents the dissim-
ilarities Di j against the fitted distances bi j = 〈xii, x j〉 (where
〈·, ·〉 represents the inner product for classical scaling), or
the residuals Re si j = f (Di j) − bi j (where f (Dij) is the
transformation of dissimilarities and is a power for metric
scaling). In terms of MDS qualitative analysis in this paper,
the goodness of fit is very high for all values of n and all
types of correlation methods. Being the MDS quantitative

assessment described by the stress value, Figure 5 depicts the
stress plots for the Kendall τ correlation method and the limit
cases of n = 2 and n = 8, showing the usual monotone
decreasing shape. For other correlation methods, the stress
plots show a similar behavior.

Although the chart of Figure 7 supports the adequacy
of adopting a two-dimensional representation for the MDS
output, it also shows that a three-dimensional map can lead
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to a slightly improved rendering of MDS plots. In this line
of thought, Figures 8 and 9 show two “visually enhanced”
three-dimensional MDS maps for n = 8, corresponding
to the Minkowski index rMi j with α = 2 and the Kendall

τ correlation rKi j . Both figures include visual cues (like
perspective effects, shadows on objects/on the floor, and
three coordinate axis) to help in the spatial and structural
understanding of chromosomal relationships.

In Figure 8, it is clearly noticeable that a primate species’
cluster near to a mammals’ cluster is having next to it the
aves’ cluster. The mammals and aves’ cluster depict a “linear”
disposition of CRs, which is confirmed by the corresponding
shadows on the floor. A “linear” chromosomal disposition
is also observed in species like {Ag, Am, Sc}, but not in
species like fishes {Zf, Tn} and nematodes {Cb, Ce}. It is also
noteworthy to mention the “parallelism” between the linear
dispositions of the mammal species (excluding primates) and
the aves {Ga, Tg}.

In Figure 9, we can observe that mammal species are
organized in a cluster, all of them depicting a “linear” spatial
disposition. The aves {Ga, Tg} also cluster together, near the
mammals, each one with a clear “linear” disposition. The
shadows over the floor (a visual cue) help understanding
these spatial and structural relationships. For the remaining
species, the fishes {Zf, Tn} are spatially far apart, only Tn
depicting a “linear” spatial disposition. This same disposition
somewhat exists in the {Am, Ag, Sc}, but not in the nema-
todes {Cb, Ce}.

As mentioned in Section 2, MDS works with data that
characterized the relative distance between the objects.
Therefore, in MDS maps, rotation and translation have no
special meaning and user can adopt the one that is more
useful to visualize the clusters. Identically, MDS charts with
different number of points or with distinct measuring indices
cannot be compared, neither with each other, nor in the per-
spective of the coordinates of the points. Therefore, a “good”
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Figure 10: Chromosome similarities for the groups {Hu, Ch, Or, Rm, Pi, Op} using n = 8 and a threshold value of 99.5%.

MDS representation is simply the one that adopts a measur-
ing technique that for the phenomenon under study and for
the number of objects leads to a map where user can visualize
easily clusters that make sense for that particular application.
In this line of thought in this paper, the association of
several correlation measures for the 421 CRs proved to lead
to a comprehensive pattern easily visualized and assertively
interpretable under the light of present-day knowledge.

In this study, the nuclear genomic information used
is still incomplete, as explained in [6]. For many of the
species referred in Table 1, there is a considerable amount
of nuclear DNA sequence data not yet attached to CRs or
with an unknown placement. This undesirable uncertainty
may contribute to misleading results, not caused by the
mathematical and computational tools adopted. While the
focus of this paper was mainly an interspecies comparison,
the same methodology can be used for revealing intraspecies
chromosomal patterns. We also foresee the application of the
described methodology to the study of mitochondrial DNA
sequences. These issues will be the subject of further research.

4. Conclusions

Chromosomes have a code based on a four-symbol alphabet
and the information can be analyzed with mathematical tools

usually adopted in the analysis of complex systems [16].
In this paper, it was applied a histogram-based conversion
scheme for establishing a numerical signal and the resulting
information was studied by means of four distinct correla-
tion measures. The application to the CRs of twenty species,
with a grand total of 421 CRs, revealed that the combination
of sequence lengths of eight symbols, the Kendall τ rank
correlation, and the MDS visualization is the most promising
one, leading to the emergence of patterns that can be easily
and assertively interpreted and compared.

The three-dimensional patterns of CRs depicted in
Figures 6 and 7 “point” to a high level of genomic structuring
in each species (“linear” and “spherical” arrangements) and
between species (“parallelism” between mammals and aves).
Although we do not have an immediate explanation for this
noticeable multidimensional structuring, it may be related to
higher levels of information structure underlying CRs.
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